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Recently, the point of view on nonlinear processes referred to as ‘synergetics’ has 
come in for wider use in biophysics. At the macroscopic level, this approach may 
be regarded as universally accepted, although failing to avoid excessive claims 
(evidently provoking criticism of the weak constructive basis of the dissipative 
structure notion in biology, e.g. Blumenfeld [I]). Nowadays, synergetic ideology 
has started penetrating the area of molecular organization, because a more adequate 
approach to the understanding of the functioning of molecular machines seems 
hardly possible. In view of this, biomolecular processes of enzymatic catalysis, 
the function of the charge transport chain, and the phosphorylation processes 
associated with it are of vital interest and importance. In all such processes, the 
enzymatic function (regarded in a general sense) is essentially carried out by protein 
macromolecules, containing, apart from the active center, a large high-molecular 
portion (globule) whose role is far from passive. Its main feature consists of 
conformational lability (in a figure of speech, a protein is ‘a sack of conformations’). 

Numerous and effective experimental investigations removed all doubts that it 
is this property which determines the unique functioning efficacy of protein com- 
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Fig. 1. ‘Ifrpical shape of the conformational potential and mechanical analogy to the ‘protein-machine’ 
concept [3]. 

plexes. Attempts to develop general principles and to determine physical mech- 
anisms by which conformational degrees of freedom participate in this function 
(models of induced structural correspondence, rack model, energy recuperation 
hypothesis, etc. [l]), have been known for a long time. 

Gradually, these qualitative ideas were shaped into a hypothesis on the presence 
in protein-enzyme of the so-called selected degree of freedom of a mechanical 
nature, having a key role in the processes of energy accumulation and utilization 
during the transformations in an enzyme-substrate complex [2]. It was postu- 
lated that all the multiplicity of protein conformational transformation may be 
schematically reduced to a one-dimensional mechanical process with a nonlinear 
potential along the reaction coordinate, which is, in fact, represented by a gen- 
eralize conformational coordinate assumed to be weakly dissipative. In this case, 
the protein-enzyme function is similar to the function of a construction with one 
degree of freedom - a machine with detaining barriers etc. (the‘ protein-machine’ 
concept [l-3]) (see Figure 1). 

Further development of these ideas naturally advanced towards specifying the 
emergence of such potential profiles and the initiation of motion in them at the ex- 
pense of electron-conformational (mainly for transport chains) or enzyme-substrate 
interactions. This resulted in the emergence of the model of the functioning of the 
molecular carrier-‘transformer’ [3-51 and in the relaxation concept of the elemen- 
tary act in enzymatic catalysis [ 1,4] being conceptually very close. The ‘trans- 
former’ scheme of functioning is clear from Figure 2. 

The energy taken from the electron and accumulated in the elastic deformation 
(conformation) of the macromolecule, is spent in the coupled endoergic process 
(ATP synthesis, active transport, etc.) at, say, stage IV. Here, it performs the role of 
a primary macroerg, i.e. as a universal energy portion used in bioenergetics. While 
these patterns were under discussion, the problem arose of the characteristics of 
the formation initiated by a charge coming to a molecule and being essentially a 
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Fig. 2. ‘Four-step’ performance regime of carrier-transformer T [3]. To, T- states describe the 
‘initial’, and T-, To - the ‘final’ conformations (T" and T- are metastable). Electron transitions I, 
III may be of a tunnel-like nature. 

polaron on a macromolecule scale. Indeed, such a ‘conformon’ ([6], see also [7,8]), 
i.e. a local conformational transformation of a functional nature, may (as estimated 
in [3]) accumulate and utilize the energy of - 0.5 eV, with dimensions of - 20 A 
and more, and characteristic frequencies in the EHF range, etc. 

The above models are useful in interpreting the fundamental role of charge 
(substrate)-conformational interactions in the biochemical elementary act. At the 
same time, they immediately suggest many questions on kinetics (the conjugation 
of rapid processes of charge transport and slow conformational motions, the neces- 
sity for special dissipation mechanisms, and so on), hindering both their acceptance 
and utilization. For this reason, the following explanation may be suggested. Al- 
though the authors emphasize (see, e.g., extensive remarks given in the context of 
relaxation model in Section 6.5 of [ 11) the necessity of essentially nonequilibrium 
conditions for the functioning of the suggested mechanisms, nevertheless, in their 
models, nonequilibrity is mostly of a relaxation nature, and does not represent a 
creative factor. It may be possible to eliminate this drawback, noticeable as it is, 
by a more modem formulation of the problem. 

Along this line, we want to introduce one of the first examples of that kind, 
namely a recently suggested nonlinear model of a self-organized system of charge 
transport [9]. Although developed for the description of the peculiarities of ion cur- 
rent through the potential-dependent membrane channels, it admits a broader inter- 
pretation. Its distinctive feature consists of explicitly accounting for the influence 
of the density of charges passing through the transport system upon the formation 
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Fig. 3. (Zefr) I-particle flux (‘pumping’) supplied to the system. AN - withdrawal of particles that 
have not passed through the channel. s2emcIx N - the flux that has passed. The channel is presented 
by the double-btier model with population N and the height of one of the barriers depending on 
the conformational coordinate xc. (right) The bifurcation curve at n/A > e2. 

of this system (e.g., upon the conformation of channel molecular groups, in turn, 
determining the conditions of passing through the channel). Such self-consistency 
can be illustrated by two equations (1) with a single nonlinear coupling (see also 
Figure 3) 

dN 
- =I-(A+!de-““)N, 
dt 

dx 
dt- 

- -kx+xN, 

where x is a conformational coordinate (overdamped oscillator) coupled to an 
average number N of particles in the channel. A, Q, and k are the corresponding 
kinetic rate constants and a, x the constants of coupling. If R/A > e2, stationary 
solutions of the system (1) exhibit a bistable behaviour within a certain area of 
values of the control parameter (pumping I>. 

In this case, the magnitude of channel-passing current may greatly vary (channel 
self-blocking, operation by the yes-no principle, etc.). Relative probabilities of the 
realization of ‘closed’ and ‘open’ states can be found if we extend the slaving 
principle [lo] to the adiabatic elimination of variable N(t) (assuming it to be 
quickly altered as compared to x(t), which has a physical justification [9]). 

Hereafter, the second of Equations (1) reflects the motion in a self-consistent 
potential 

@I(x) = kx2/2 + XI / dy(A + Q eWcry)-’ , 
J 
0 

acquiring the second minimum with the growth of pumping I and further trans- 
forming into a ground state from a metastable one (Figure 4). The picture is typical 
for the nonequilibrium phase transition of the first kind and, in explicit form, we 
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(a) b) 

F&.4. (4 1 < II; (b) ZI < I’ < h; (c)I1 < I’ < I” -c I~; (d) I~ < P. 

trace the formation of the order parameter (the selected degree of freedom) repre- 
sented, in this case, by the conformational subsystem, as well as the development of 
a nonlinear potential, ‘catches’, etc., postulated in the ‘protein-machine’ concept. 
Thus, removing the stress from the flux characteristics to the conformational one in 
the model discussed, we see that the functional role of the conformational charac- 
teristics may fully comply with all the demands imposed upon the selected degree 
of freedom (conformon) in the above model. A particular development of such 
ideas of a conformon demands special investigation (one interesting possibility is 
to be found in the closure of the conformational coordinate on the second (e.g., 
flux) variable, which would greatly enlarge the application aspect of the model). 

Thus, in the above sense, the conformon represents a coherent self-organized 
formation (a form of dynamic bound state), created under nonequilibrium condi- 
tions due to the interaction between two subsystems of different natures (frequently 
hierarchically separated in time). Though such a definition is in full agreement with 
the terminology assumed in synergetics, we would like to dwell on certain aspects 
in more detail, namely on the meaning of the notions ‘self-organized’ and ‘coher- 
ent’. The first term is as intuitively clear as it is difficult to be formalized. In the 
long run, in view of this, situations emerge when, say, the self-organization direc- 
tion may be determined with accuracy to the opposite one and in cases which are 
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standard enough (see, e.g., the discussion of the degree of organization of laminary 
and turbulent flows in [ 11,121). The efforts undertaken to establish the quantitative 
criteria of self-organization by entropy characteristics [ 1 l] have not yet offered 
reliable results (see [12, 131). The term,‘coherent’ seems better defined, however. 
When used in biology, it often acquires a qualitative sense only, i.e. determines 
the relation between different parts of the system. Meanwhile, strictly speaking, it 
would be reasonable to form a judgement on coherence only when the processes of 
its destruction are taken into account. The corresponding procedures and statistical 
quantitative characteristics are well known. From this standpoint, the model under 
study, in the simplest case based upon Equations (l), will be considered. 

Thus, introducing Langevin-type stochastic forces in dynamic equations 

dx 
-=-kx+XN+fLz, 
dt 

we intend to reveal the behaviour of the statistical characteristics depending on 
the control parameter represented again by pumping I. The stationary function of 
the correlation of fluctuations of variables (Ax An) is the most trivial of these 
characteristics; when divided by mean-square deviations, it presents a mutual 
correlation coefficient, or the ‘degree of coherence’ K(I) we are interested in 

K = 
(Ax An) 

K(Ax)2) KA~)2P’2 ’ 
(3) 

whose modulus is in the segment from 0 (complete independence of variables) to 
1 (complete ‘coherence’). 

In the general case, the solution of both stochastic equations (2) and the Fokker- 
Planck equation corresponding to them, is rather difficult. However, our prime 
interest is in a particular case of temporal hierarchy in the system expressed by the 
inequality A >> k (slow rate of conformational coordinate changes as compared 
to the rate of change in the flux). If it is fulfilled, the system behaves as predicted 
from the point of view of self-organization as interpreted by Haken ([ lo], Chapt. 7). 
However, Haken’s slaving principle, based on the possibility of adiabatic elimina- 
tion of the fast variable (in this case N(t)) should be used with caution [ 131 for our 
purposes. As is shown by analysis, the simplest and the most informative variant 
of correlation investigations is associated with the system (2), where & = 0 and 
~LN is a white noise (pumping fluctuations) of intensity D: 

z = I - (A + Cl eBaz) N + D<(t) , 

dx 
-=-kx+xN, R>k, 
dt 

(4) 

(s(t)> = 0 7 (s(t) w>> = w - t’) * (5) 
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Even in this case, it is hardly possible to write down an exact solution of 
the statistical problem. Therefore, one has to resort to the method of adiabatic 
elimination of the fast variable in the corresponding Fokker-Planck equation, 
though not in Haken’s variant [lo] where the investigation of the case (4) is 
impossible, but in one of the modifications of the ‘noisy slaving’ variant (i.e. the 
study of ‘eliminated’ variable noise [ 141, see also [ 151). Such a procedure results in 
authentic qualitative results for the k value, improving with the approach to system 
instability and enhancement of inequality A > k [ 131. 

Thus, we seek a stationary distribution function p(z, N) as a solution of the 
Fokker-Planck equation 

3P 
- -?- [(-kz + xN)p]- at- dx 

-& [(I - (A + R eHaz) N)p]+ 

D @P 
+z aN-2 

(6) 

corresponding to the system of stochastic differential equation (4) in the form of 

Pb, NJ = s(x) WY4 > (7) 

with normalizing conditions 

s g(x) dx = 1 , 
s 

/(N/x) dN = 1 . 

Then, the averages of arbitrary function 4(x, N) look like 

kb(xc, N)) = 1 s(x) dx / dN 4(x> W f@/x) = /- d4 (hz dx , 

(9) 

where (c$)~ is a partial average. In the h(N/z) function, due to the A >> k hierar- 
chy, a slow variable x is considered as a fixed parameter. In this case, in order to 
find /@V/x), Equation (6) may be reduced to the Fokker-Planck equation, corre- 
sponding to the first of Equations (4) with z taken as a parameter. Its (stationary) 
solution is* 

h(N/x) = 3 exp [-F (N- &)‘I , (10) 

where p2(x) = A + Q emaz. As it is seen from the detailed analysis [13-151, 
the equation for g(z) in the adiabatic approximation can be obtained assuming 

l For the sake of simplicity, we use ‘natural’ boundary conditions on both variables for h and g 
functions. 
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dN/dt = 0 in the first of Equations (4) and expressing N(t) through z(t) and E(t) 
in the second of Equations (4). This results in a stochastic differential equation 
with multiplicative noise or in the Fokker- Planck equation 

with stationary solution 

[d(z’)/B(s’)]dz’ . (11) 

Here 

44 = -kc + n +;IeMaz ; 

x2 D 

a(x) = (A + $-J e-az)2 * 

In (1 l), the integral is expressed in elementary functions, but it has rather a bulky 
‘transcendent’ form which is inconvenient for analysis. We shall return to this later. 
The character of g(s) and Ic, which changes with the increase of pumping, can be 
traced in rough approximation. Judging from Figures 3 and 4, we can distinguish 
three areas of I variation from 0 to 00: of very small and very large 1, where the 
system is evidently monostable, i.e. g(x) has one distinct maximum* at II: = Z; 
(i = 1 when I + 0 and i = 2 when I + cc), and transition area 11 < I < 12 
(shifted at the expense of noise multiplicity) with the bimodal form of the g(z) 
function. To begin with, we first examine two areas, where g(z), at sufficiently 
small D, will be presented in the form of the simple Gaussian 

gi(x) = &$iTi exp 
[ 
-& ( - -91 x xz 2 . 

z 
(12) 

It is easy to see that, in this case, 

When calculating the statistical values entering into expression (3) for K(I) by 
(lo), (12), (9) for sufficiently small D, we shall confine ourselves to the first two 
terms of the expansion 

(q+)>i = j-$(x> g(x)dx = 44%) + 2 4”(%> , 

Ultimately, in the above-mentioned limit areas, we receive 

* The more distinct, the less the intensity of noise D is; noise multiplicity is not essential in this 
case. 
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Ki(I) = I@,uldx) 

+‘(dp/dx)2 + kp4(D/4Di) 2=1,’ 1 
i.e., the degree of coherence 

Ia!~/di@ ) I +- 0 ) 

K(I) 21 
2xaQ R21c I exp[-I(ax/Ak)] , I * 00 

(13) 

is decreasing to zero when moving further away from the area of nonequilibrium 
phase transition. A similar result would be obtained if we examined the small 
fluctuations around the stationary monostable solutions and linearized stochastic 
equations, i.e. reduced them to the two-dimensional Omstein-Uhlenbeck process 
(see [13]). 

In the area of function g(x) bimodality (i.e. in transition area) for small D, we 
can present the latter in a purely illustrative approximation as a discrete set 

fi , x = Xl, 

s(x) = 

{ 

Pl + 9 = 1 ) (14) 
9, x=x2, 

where Xl, X2 are the locations of the peaks of real g(x) in the bistability area. 
According to (14), 

Then 

(x2) = PlX1” + P2Xi ) ((Ax:>~) = W3(& - X2J2, 

(N) = Pl(N)Xl + Pz(N)x, , etc. 

K, after altering P from 0 to 1 (transition from one to another bifurcation 
curve branch, i.e. ‘nonequilibrium phase transition’) assumes the form of 

K= m WXI - (Wxz) 
J? J3 

(15) 
- - 
P2(Xl> + /J2(X2> 

+ p14 (Wx, - (WxJ2 

witnessing the fact that, at small D, it may assume the values of the order of one. 
Thus, the degree of coherence can be qualitatively characterized with an increase 

in pumping as acquiring a maximum of the order of unity in the area of transitive 
pumpings and decreasing to zero beyond the boundaries of this area Such behaviour 
of K(I) will be more pronounced when the temporal hierarchy is more distinct 
in the system (cf. [13]). One may try to quantitatively refine this result using the 
explicit form of the function (11): 

g(x) = 
N 

(A + R e-cr2)2 exp 
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Function g(s) (relative units). Sz = Q = x = 1, A = 0.1, k = 0.01; changes of D and I are 

+2ARk - e-ax 1 XI x+--- kf12 -2ax 
a a 2Ak +ze (16) 

in expression (3), assuming, with respect to (7), the form of 

K(I) = 
{J 

x&4 dx 
R+Re-ax 

X x2 g(x) dz - (/wbWf)‘] [j- i\“,‘“,‘BTax x 

I2 D 
-112 

X 
*+Qe-Qx +y (17) 

Calculations by formulae (16) and (17), using a computer, supports the qua& 
itative conclusions on the behaviour of K(I) (Fig. 5,6). The parameters’ values 
used here are illustrative and ensure the existence of a bistability area only. As for 
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Fig. 6. The degree of coherence as a function of pumping intensity. D = 10m4. Other parameters 
are the same as in Figure 5. 

biological reality, we may note that the very similar values for sodium channels do 
not contradict the picture described above [7]. 

Conclusion 

A short summary of this paper is given below. 
At the beginning we discussed in detail the key role played in biomolecular pro- 

cesses by the conformational state of the corresponding components of a system 
and modem interpretations of charge-conformational interaction, and the confor- 
mon problem in particular. By way of an example of a model of a self-organized 
system of biological charge transport, we demonstrated that the emergence of a 
functionally selected degree of freedom of conformations seems to be more natural 
(and rather preferable in the kinetic sense) in nonequilibrium flux conditions which 
are widespread in biochemical processes. A proposed concept of a ‘nonequilibrium 
conformon’ originates from the idea of its being one of the ‘projections’ of a bound 
charge-conformation state of the dynamic type, whose very existence and func- 
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tional activity are regulated by the intensity of charge flux. From our viewpoint, 
such concept is more convenient for the description of the coupling of biological 
fluxes of a different nature. 

In the model under study, a nonequilibrium conformon serves, literally speak- 
ing, as an example of a coherent product of the internal interactions of subsystems 
constituting a biomolecular transport system. As we have shown, the correspond- 
ing correlation characteristics of subsystem fluctuations created by noise have a 
noticeable increase in the functional self-organization area (it is interesting that the 
growth is taking place in the area of nonequilibrium phase transition of the first 
kind). It seems possible that it may serve as one of the suitable quantitative esti- 
mates of manifestations of the effects that are assumed to be denoted by the word 
‘self-organization’. As it takes place, the dynamics of discrete state emergence in 
the simple two-component dissipative system is demonstrated. It seems to pave the 
way to understanding the initiation mechanism of integral macroscopic quantum 
systems, the concept of which allows us to explain the differential stability of living 
systems [16]. 
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